Calculate the bisilhouette score.
Usage
bisilhouette(
data,
row_clustering,
col_clustering,
method = "euclidean",
seed = TRUE,
n_reps = 10
)
Arguments
- data
data matrix, shape (N, p).
- row_clustering
binary matrix indicating row clustering, shape(N, k).
- col_clustering
binary matrix indicating column clustering, shape(p, k).
- method
distance metric to use, str. Default is "euclidean".
- seed
seed if seed should be set for random number generation, int. Default is FALSE.
- n_reps
number of repetitions if random biclusters added, int. Default is 10.
Value
list containing; - bisil: bisilhouette score, float. - vals: individual sample scores, shape (N, ).
Examples
data <- matrix(stats::rnorm(50), nrow = 10)
row_clustering <- cbind(
stats::rbinom(10, 1, 0.5),
stats::rbinom(10, 1, 0.5),
stats::rbinom(10, 1, 0.5)
)
col_clustering <- cbind(
stats::rbinom(5, 1, 0.5),
stats::rbinom(5, 1, 0.5),
stats::rbinom(5, 1, 0.5)
)
bisilhouette(data, row_clustering, col_clustering)
#> $bisil
#> [1] -0.1499112
#>
#> $vals
#> $vals[[1]]
#> 2 4 5 7 10
#> 0.07897180 0.01118652 -0.10276959 -0.19003057 0.08365112
#>
#> $vals[[2]]
#> 3 4 5 6 7
#> -0.18493879 -0.30868811 -0.23636111 0.04152502 -0.10797911
#>
#> $vals[[3]]
#> 1 2 3 5 7 8
#> -0.08383198 -0.43240426 -0.12676552 -0.41951917 -0.18454112 -0.18374371
#> 10
#> -0.43572307
#>
#>